Commutative Geometries are Spin Manifolds

نویسنده

  • A. Rennie
چکیده

In [1], Connes presented axioms governing noncommutative geometry. He went on to claim that when specialised to the commutative case, these axioms recover spin or spinc geometry depending on whether the geometry is “real” or not. We attempt to flesh out the details of Connes’ ideas. As an illustration we present a proof of his claim, partly extending the validity of the result to pseudo-Riemannian spin manifolds. Throughout we are as explicit and elementary as possible.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Commutative curvature operators over four-dimensional generalized symmetric spaces

Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.

متن کامل

Linear Connections on Fuzzy Manifolds

Linear connections are introduced on a series of noncommutative geometries which have commutative limits. Quasicommutative corrections are calculated. LPTHE Orsay 95/42; ESI Vienna 235 * Laboratoire associé au CNRS URA D0063

متن کامل

Non-commutative Extensions of Classical Theories in Physics

We propose a short introductory overview of the non-commutative extensions of several classical physical theories. After a general discussion of the reasons that suggest that the non-commutativity is a major issue that will eventually lead to the unification of gravity with other fundamental interactions, we display examples of non-commutative generalizations of known geometries. Finally we dis...

متن کامل

Riemannian Geometries

In this paper we provide a non-commutative version of the fundamental class [dM ] = [(L 2(M,Λ∗(T ∗M)), d+ d∗, ε)] of a smooth closed Riemannian manifold M . The formulation involves elements of A. Connes’ non-commutative geometry, G. Kasparov’s KK-theory and the standard theory of von Neumann algebras. Using axioms based on [C1], it is proved we can recover the ordinary differential geometry of...

متن کامل

37 v 2 2 6 O ct 2 00 0 Riemannian Geometries Steven Lord

In this paper we provide a non-commutative version of the fundamental class [dM ] = [(L 2(M,Λ∗(T ∗M)), d+ d∗, ε)] of a smooth closed Riemannian manifold M . The formulation involves elements of A. Connes’ non-commutative geometry, G. Kasparov’s KK-theory and the standard theory of von Neumann algebras. Using axioms based on [C1], it is proved we can recover the ordinary differential geometry of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008